One Career in Physics

By Dr. Christina Back Vice President Nuclear Technologies and Materials

Presented to Yale Physics Professional Development

EM² is a Modular Gas-Cooled, "Convert and Burn" Fast Reactor

Specifications:

- 265/240 MWe per reactor for water/dry cooling
- 500 MW_t reactor power
- 4 modules per standard plant
- 60 year plant life; 30 year core life
- 60 year dry fuel storage
- 14 % average fuel burnup
- Multi-fuel capable
 - Fissile: low-enriched U or converted MOX
 - Fertile: depleted U, natural U, spent LWR fuel or thorium

Reactor Physics, Material Properties, and Fabrication Lead to Choice of UC fuel

For EM², Achieving Multi-Decade Life Poses Challenges and Drives Fuel Design

EM² Design Features:

- Use wide variety of fuel materials
- Long life without refueling
- High burn-up and power density
- High temperature/ efficiency

Challenges:

- Survive high dpa (400+ peak)
- Achieve high thermal conductivity
- Retain structural integrity with joints
- Withstand fuel swelling and PCCI
- Vent gaseous fission products
- Use of Ceramic materials
 - SiC-SiC cladding and UC fuel

UC Fuel Fabrication via Droplet Generation Works for Both Fresh U and "Spent" Fuel

GA Has Established A State-Of-The-Art Nuclear Fuel Laboratory

Sol-gel column

<image>

UC kernels

SiC coater

Sintered pellets

Hot press

SiC composite fuel cladding

Prototypes have been fabricated and samples prepared for irradiation

GA Fabrication Scale-up for SiC-SiC Cladding Tubes

SENERAL ATOMICS

GA Has Invested in the Capabilities, Process Development, and Scale-up for Advanced Reactors

Cladding scale-up

GA Composites Show Pseudo-Ductile Behavior Under Mechanical Loads

Flexural strength increases significantly with density

SiC Ceramic Joint Geometry Has Been Studied and Optimized

- Planar geometries provide intrinsic properties but aren't applications specific
- Surface area and features at interface depend on material performance, processing behavior and application requirements
- Joint material must be considered in conjunction with the joint geometry
 - Joining techniques must be applied to cylindrical geometries

10

Cylindrical joints must be characterized in reliable and meaningful ways

Methods Were Developed to Assess Mechanical Performance of Joined Cylindrical Components

Testing of joint-endplug-tube assembly

- Hydrostatic burst testing

- Simulates internal pressurization of fuel rod
- Complex set up, difficult to implement at high temp.

- Enplug Pushout testing

- Uniaxially loads endplug on internal surface
- ASTM test standard being developed

EM² Is a Compact Fast Gas Reactor Optimized for the 21st Century Grid

- Levelized power cost 40% less than advanced light water reactor (ALWR)
- 53% net efficiency
- 30-year refueling
- Burns low-enriched uranium, converted MOX, Th, depleted U
- Waste stream is 80% less than ALWR
- No need for water cooling
- Rapid load following

Status

- Commercial plant concept design, safety analysis, cost estimate defined
- Fuel irradiation program has been initiated with Halden
- Current work focused on prototype design and design code update

GA is Drawing From Industry, Academia and National Labs to Meet the Technological Challenges

- University of South Carolina
 - Customized tube mechanical testing, AE, DIC
- Massachusetts Institute of Technology
 - Irradiation, corrosion, quench, and mechanical testing
- Univ. California-Berkeley, Oxford
 - Micro- and Nano-scale mechanical characterization
- Oak Ridge National Laboratory
 - Irradiation testing of SiC-SiC and joints
- San Diego State University
 - Ceramic sintering and consolidation
- University of California-San Diego
 - Structural characterization of SiC-SiC
- Oregon State University
 - Micro-scale modeling of SiC-SiC composites
- Brookhaven National Laboratory
 - 3-D x-ray tomography of SiC
- Manchester University
 - Micro- and Nano-scale characterization at temperature
- University of Illinois at Urbana-Champaign
 - Micro-scale thermal characterization of SiC-SiC

UNIVERSITY OF SOUTH CAROLINA

SAN DIEGO STATE

UNIVERSITY

Dak Ridge National Laboratory

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

The University of Manchester

