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•  PET as a cancer imaging biomarker 
•  Themes and goals 
•  Estrogen Receptor PET as a predictive marker 
•  Proliferation PET as an early response indicator 

•  Future Directions 



Anatomic versus Functional Imaging 
•  Anatomic Imaging 

• Relies on tumor size, shape, density 
•  e.g., mammography, CT 

• Measures response by changes in size 

•  Functional/molecular imaging 
• Relies on in vivo tumor biology: perfusion, 

metabolism, molecular features 
•  e.g., MRI, PET  

• Measures response by changes in 
functional/molecular processes  



Nuclear Medicine 
Principles 
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Positron Emission Tomography 
(egs, 18F, 68Ga) 
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Why PET? 
•  Greater sensitivity to isotope emissions 

•  “Electronic collimation” (versus physical collimation) 
uses greater fraction of emissions 

•  Less image noise and/or lower patient radiation dose 
•  Better quantitative imaging 

•  Exact correction for photon attenuation in the body 
using measured attenuation properties (e.g., by CT) 

•  Larger range of radiopharmaceuticals for tracer imaging 
•  More “biologic” nuclei – 11C, 15O, 13N 18F  
•  But …requires on-site (11C, 15O, 13N) or regional (18F) 

cyclotron  



A	Window	on	“In-the-Pa1ent”	Cancer	Biology:	
Positron	Emission	Tomography	(PET)	
Physics	and	Chemistry	Meet	Biology	

Result:	Image	of	Tracer	
Concentra1on	

PET/CT	Scanner	(Siemens	mCT	):				
Acquires	and	Reconstructs	Tracer	Image	

Electron-Positron	
Interac1ons	

Cyclotron	(IBA	Cyclone):					
Produces	Isotope	

Automated	“Hot	Cell”:	
Synthesizes	PET	Tracer	

18F*	

18F-Fluorodeoxyglucose		(FDG):	
	a	tracer	of	sugar	metabolism	

O OH	

OH	
OH	

CH2OH	

18F*	
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Why Radiotracer Imaging? 
Answer: To achieve tracer conditions 

•  Example: Estrogen Receptor Imaging 
• Tracer specific activity  1000 mCi/umol 
•  Injected activity dose:                  5 mCi 
•  Injected molar dose:            5 umol 
• Peak blood concentration:           1 nM  
 (Typical estradiol blood concentration is nM) 

•  Radiographic, MR, or optical agents require mM  
(factor of 106 difference!) 

•  Therefore – PET can image biochemical 
processes without disturbing them 



PET/CT 
Combines Molecular and Anatomical Imaging 

(Alessio, Rad Clin N Amer, 2005) 
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Positron	Emission	Tomography	

Tracer: [18F]fluorodeoxyglucose
 10 mCi = 370MBq

15-20	minute	scan	
PET	:	1	rem	(FDG)	



Advances	in	
Image	Quality	 Penn-PET	

1988	

Philips	
Gemini	TF	
2006	

Wash	U./UCLA/CTI	

body	
brain	

Philips	Vereos	2015	

MD	Anderson	
2015	



Posi1on-Sensi1ve	Scin1lla1on	Detector	for		
Single-Photon	Radioisotope	Imaging:	The	Anger	Camera 

Anger	camera	invented	1957	

First	camera	had	7	PMTs	
coupled	to	NaI(Tl)	scin1llator	

Planar	Imaging:	First	
commercial	Anger	camera	was	
delivered	by	Nuclear	Chicago	to	
W.	Myers,	Ohio	State	1962		

X = ΣxiPi/E Y = ΣyiPi/E 

Posi1on:	Weighted	centroid	



Scin1lla1on	Detectors	for	PET:	Early	Steps	

1-to-1	coupling	

Wash.	U.	1981-2	
CsF	25	mm	φ	x	45	mm	Crystal	
28	mm	φ	PMT	
Δt	=	500	ps	

Single	Crystal-
Single	Tube	(CsF)	

Casey,	Nub	Block	detector	1986	

4 x 4 x 30 mm3

19 mm PMTs (4)

18,432 crystal elements (32 rings)
1,152 PMTs

BGO	scin1llator	
+	 	High	stopping	power	
-	 	Low	light	output	
- 	Slow	scin1lla1on	decay	

Block	Detectors	(BGO)	



Scin1lla1on	Detectors	for	PET:		
	Large-Area	Con1nuous	Detectors	

Flat	Scin1llator	(NaI)	 Curved	Scin1llator	



Fast	Detectors	for	Time-of-Flight	(TOF)	PET	

1-to-1	coupling	

Wash.	U.	1981-2	
CsF	25	mm	φ	x	45	mm	Crystal	
28	mm	φ	PMT	
Δt	=	500	ps	

Crystal	posi1on	flood	

Philips	2005-2015	
LYSO	4	mm	x		4	mm	Crystal	
39	mm	φ	PMTs	
Δt	=	500	ps	

Philips	2015-	
LYSO	4	mm	x		4	mm	Crystal	
4	mm2	SiPMs	
Δt	=	300	ps	

8x8 SiPM array 

Silicon	Photo-mul1pliers		
2-D	array	of	micro-cells	
(typically	1000’s	)	opera1ng	in	
Geiger-mode	



SiPM	detectors	in	small	animal	and	brain	PET	

Yoon	SNM	2011		

Seoul Nat’l University

1.5	x	1.5	x	7	mm3	LGSO	
Hamamatsu	MPPC		

Small	animal	PET/MR	

Weibler	et	al	NSS/MIC	2012		

8x8	array	of	4-mm2	
dSiPM	devices	

30x30	array	of	1-mm2		
LYSO	crystals	



PET	Instrumenta1on	Advances	Beyond	Detectors	

•  True	3D	imaging	–	improved	sensi1vity	
•  Itera1ve	reconstruc1on	–	beber	system	modeling,	
beber	images	

•  Time-of-flight	(TOF)	acquisi1on	and	reconstruc1on	–	
decreased	image	noise,	improved	image	quality	

•  Total-body	PET	imaging	–	building	Explorer	devices	at	
UC	David	&	Penn	



scatters randoms

True coincidences
2D vs. 3D Imaging 

•  2D:	Low	sensiDvity	
•  septa	allow	mechanical	rejec1on	of	

scaber	&	randoms	
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•  3D:	High	sensiDvity	
•  requires	good	energy	resolu1on	to	

reject	scaber	

•  requires	good	1ming	resolu1on	to	
reject	randoms	

•  requires	more	sophis1cated	
reconstruc1on	algorithm	



Iterative
Reconstruction: 

EM Algorithm

more accurate 
modeling of 

physical effects, 
including 

statistical nosie

Analytic 
Reconstruction:

Filtered 
Backprojection

Filter trades off 
resolution and 

noise



Signals from different 
voxels are coupled 
SNR ≠ N / (N)1/2

Image reconstruction from projections

Time-of-flight (TOF) assisted reconstruction

Δx  = c . Δt/2
Δt = t1-t2 

t1 t2

TOF information reduces coupling, thus improves SNR
Gain in SNR ~ (D/Δx)1/2

back-projection

Δx = 9 cm @ Δt = 600 ps

(line-integrals)



Improved TOF – is it worth it? 

Sur1	et	al,	PMB	2013	

35-cm	diameter	phantom,	1	cm	lesions	with	3:1	uptake	

0.78	 0.98	

0.32	 0.61	ALROC	=		

0.87	0.54	ALROC	=		

ALROC	=		

600ps non TOF 

5 min 

10 min 

20 min 

0.99	

0.70	

0.94	

300ps 

0.99	

0.87	

0.98	

150ps 

Detectability	depends	
on	TOF	and	scan	3me	
(or	ac3vity)	
	
…	and	the	difficulty	of	
the	task	

Monte	Carlo	Simula1ons	



Explorer Whole-Body Scanners (UC Davis and U Penn) 

• The	detector	modules:	2.76	x	2.76	x	18.1	mm	LYSO	
• Total	of	564,480	crystals	and	53,760	SiPMs	
• Energy	resolu1on	of	~12.5%	
• Timing	resolu1on	of	~400	ps	
• Scanner	diameter	of	78.6	cm	(bore	70	cm)	and	
Axial	FOV	of	195	cm	

• 64-slice	CT	in	front	

UIH	
mock-up	
at		
UC	Davis	

•  The	detector	modules:	3.86	x	3.86	x	19	mm	LYSO	crystals	
•  Read	out	by	digital	SiPMs	(1-to-1)			
•  Energy	resolu1on	of	~10%	
•  Timing	resolu1on	of	~250	ps			
•  Scanner	diameter	of	78.4	cm	(bore	70	cm)	and	Axial	FOV	
of	70	cm	(3	rings),	140	cm	(6	rings)	or	210	cm	(9	rings)	

•  64-slice	CT	in	front		

U.	Penn	
prototype	
design	



Why	a	Whole	Body	Scanner?	

•  High	sensi1vity	≈	AFOV2	

–  Lower	dose	
–  Pediatrics	
–  Low	β+	tracers,	 	 	 	 	 	 	 	 	 	 	 	

	e.g.,	90Y	

	

Dosimetry	study	of	[18F]ISO-1	:	sequen1al	scans	
E.	McDonald,	R.	Mach	

•  Simultaneous	measures 	 	 	 	 	 	 	 	
	of	mul1ple	organs	
–  Total	body	kine1cs	
–  Drug	development	

20-40	min	 140-160	min	

Mul1-bed	scans	 Total-body	scan	

Monte	Carlo	Simula1on	
Zhang	et	al,	PMB	2017	
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Cancer Imaging for Detection: 
Targets for Detecting Tumor Cells 

Higher in Tumor than Normal Tissue 

Protein 
Synthesis

DNA Synthesis

Energy 
Metabolism

Glucose (FDG)

Membrane 
Synthesis

Blood 
Flow





FDG PET/CT Detects  
Breast Cancer Outside the Breast and Axilla 

coronal 

axial 



Can	FDG	PET	Measure	Response?	
(answer = Yes!)	

Pre-Therapy	 4	weeks	of	Therapy	

Sternum–	max	SUV	16.0	at	baseline,	7.2	aser	4	weeks	



Imaging to Guide Targeted Therapy 
Help Match Therapy to Tumor Biology 

• Goals in cancer treatment 
• Characterize tumor biology pre-Rx 
•  Individualized, specific therapy 
• Static response may be acceptable 

•  The implied needs for cancer imaging 
• Characterize in vivo tumor biology - predict 

behavior 
•  Identify targets, predict response 
•  Identify resistance mechanisms 
• Measure tumor response (early!) 



Emerging Cancer Imaging Paradigm: 
Measure Factors Affecting Response  

Variable Levels in Tumor 

Surface 
Receptors
DOTATE

Proliferative Rate
Thymidine & Analogs

Metabolic Rate
FDG, Acetate, Glutamine

Hypoxia
FMISO, ATSM

Drug Transport
MIBI, Verapamil, 

Nuclear 
Receptors
FES, FDHT

Angiogenesis
Water , RGD 

Peptides



Imaging and Cancer Therapy  
Clinical Questions for Biomarker Imaging 

•  Choosing the right patients 
•  Is the therapeutic target present? 

•  Choosing the right drug 
• Does the drug reach the target? 

•  Getting the right result 
•  Is there a early response? 

•  Predicting the outcome 
• Will response lead to better patient survival? 
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Targeted Breast Cancer Therapy: 
The Estrogen Receptor (ER) and Endocrine Treatment 

(Johnson and Dowsett, Nat Rev 
Cancer 3:821, 2002) 

ER -  < 5% 

ER +  50% - 75% 

Endocrine 
Therapy 

Response Rate: 



[F-18]-Fluoroestradiol (FES): 
 PET Estrogen Receptor (ER) Imaging 

FES Estradiol  

HO

OH
 

HO

OH

F* 

(Kieswetter, J Nucl 
Med, 1984) 

Relative Binding  
(FES vs Estradiol) 

ER 0.9 
SHBG 0.2 - 0.8 



18F-Fluoroestradiol (FES) PET Imaging of ER 
Expression in Breast Cancer 

 Peterson, Mol Imag Biol 16:431, 2014 
 University of Washington, NCI CIP Phase I/II Program 

FDG FDG FES FES 

Estradiol 
Binding 

Estradiol 
Binding 

Glucose 
Metabolism 

Glucose 
Metabolism 

       Patient A           
Biopsy = ER+ 

      Patient B           
Biopsy = ER- 



Is the Target Present? 
FES Uptake Predicts Breast Cancer 

Response to Hormonal Therapy 
Pre-Rx Post-Rx 

FES FDG FDG 
•  Newly Dx’d 
met breast CA 

•  ER+ primary 

•  FES-negative 
bone mets 

No 
response to 

several 
different 
hormonal 

Rx’s 

University of Washington 

•  Recurrent 
sternal lesion 

•  ER+ primary 

•  Recurrent Dz 
strongly FES+ 

Excellent 
response  
after 6 wks 
Letrozole 

Example 1 

Example 2 

(Linden, J Clin Onc, 24:2793, 2006) 



Serial FES PET Measures Endocrine Therapy 
Impact on Tumor Estrogen Binding 
(Linden, Clinical Cancer Res, 17:4799, 2011) 

 
Tamoxifen 

(blocks receptor) 
Letrozole 

(lowers estrogen) 
Fulvestrant 
(blocks receptor) 

 



FES PET Applied to a New ER-Targeted Agent: 
Novel Estrogen Blocking Drug (SERD; ARN-810) 

Yang, Clinical Cancer Res, epub, 2017 

Pre-therapy 

Post-ARN-810 
(ER Blcoker) 
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Biologic Events in Response to 
Successful Cancer Therapy 

Rationale for Measuring Early Response by 
Cell Proliferation Imaging 

   Cellular Proliferation 
or 

 Cell Death 

   Viable Cell 
Number 

 Tumor size 

Rx 

   DNA Synthesis 
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(Glucose 
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 116
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Dr Shields
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Marrow  (with mets)

Post-RxPre-Rx

Tumor

Small Cell Lung Cancer:  
PET Imaging Pre-and Post One Cycle of Rx 

7 days (Shields, J Nucl Med, 1998) 



Compartmental Model for 2-11C-Thymidine (TdR) 

Image Total =  Sum(Tissue Compartments) + Vb(Blood Total) 

Blood 
Non-CO2 

Metabolites 
Tissue 

Metabolites 

Blood 
 CO2 

Tissue 
CO2 

Fixed 
CO2 

K1m 

K1c 

k2m 

k2c 
k3c 

k4c 

Flux = [TdR]KTdR =  [TdR] K1t k3t 
(k2t + k3t) 

(Mankoff, J Nucl 
Med, 1998)

K1t 
Blood 
TdR 

Tissue 
Precursors 

DNA k2t 
k3t 

Flux Constant (KTdR ) 



Thymidine Analogs for  
PET Cell Proliferation Imaging 
Clinically Feasible Isotope and Imaging 

Protocol 

(Shields AF, from Mankoff, Shields, and 
Krohn, Rad Clin N Amer 43:153, 2005) 
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18F-Fluoro-L-thymidine  
(FLT) 

FLT PET Images of Lung 
Cancer 

(Grierson, Nucl Med 
Biol 27:143, 2000) 





Pre-therapy 

Complete 
remission 

Resistant 
disease 

Chemo 

Chemo 

10  
 
 
 
 
5 
 
 
 
 
0 

SUV 

FLT PET as a response biomarker 

FLT PET 

CLINICAL  
OUTCOME 

(6 mo) 

Post-therapy 
(2 wks) 

Vanderhoek et al 2011, Leuk Res 35: 310 
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Molecular Imaging:  
A Tool for Measuring In Vivo Cancer Biology 

Genes Gene 
Expression Proteins 

Integrated Protein 
Function 

Sequencing 

Gene Expression 
Arrays 

Immunohisto-
chemistry 

Molecular 
Imaging 

mRNA 



Simplified Cancer Metabolism Roadmap 

(Dang, Cancer Res 
70:859, 2010) 



Energy Metabolism & Biogenesis 
 Aggressive Tumors Can Use Both  

Glutamine and Glucose as Fuel 

Glycolysis 
TCA 
Cycle 

Glucose 

Glutamine 

Ac-CoA 

Molecules 
for 

Biogenesis 

Energy  
Non-oxidative Energy and 

Biogenesis 
Oxidative 



PET Tracer for Imaging Glutamine Metabolism   
Pre-Clinical Studies in a Rat Brian Tumor Model 

(courtesy of Hank Kung and Bob Mach, U Penn) 

(Qu, JNM 2012: 53; 98-105) 

L-5-11C-glutamine  

(Lieberman, J Nucl Med 52:1947, 2011) 

[18F](2S,4R)-4F-Glutamine 



Glutamine Kinetics & Impact of 
Blocking Glutaminase (GLS) 

Block 
GLS 

Glutamine 

Glutamate 

Zhou, Pantel, Mankoff 



[18F]Fluoroglutamine to Measure GLS Inhibition in 
a Breast Cancer Mouse Model 

Glutamine Pool 
Size by 1H NMR  

[18F]Fluoroglutamine PET Uptake 

Zhou, Cancer Research, 2017 



Imaging Glutamine and Glucose 
Metabolism in a Single Imaging Session 

NIH R33CA225310 (Cancer Moonshot Program) 

Large-Volume 
PET Tomograph 

Dual Tracer 
injection 

Segmentation 
and Mixture 

Analysis 

Regional Quantitative  
Biology 

Biologic 
Heterogeneity 

Dynamic Imaging Parametric Images 
(Glutamine/Glucose Ratio) 

Feature Extraction 18F-FDG 18F-FGln 
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